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This technical note follows a previous one, ”Adapting MinMax QC approach to NRT constraints at CORIOLIS
for CMEMS INSTAC products”, published in February 2019, and used for a first operational implementation of
MinMax Quality Control (QC) for ARGO NRT data at Coriolis data center. In this work, we used an image
of the CORIOLIS database at the earliest diffusion step to quantify the changes in amounts of good and bad
alerts raised by the MinMax check while varying artificially and homogeneously the validity intervals using a P
widening factor, see the corresponding note for further details. The alerts where counted by profile rather than
by individual observation, as we wanted to focus on the amount of profiles to be visualized by a QC operator.
The reference fields used in that study were some preliminary ones used in delayed-mode QC at Coriolis; they
had been smoothed out horizontally over 3 layers of ISEA grid cells and vertically over the immediately above
and below layers (with a regular 20 db layer thickness).

For this updated study, a specific database has been setup at OceanScope; its initial state consists of 1) an
ARGO GDAC image built on january 2019, 2) several datasets of historical CTDs and 3) the MEOP Sea Mammals
dataset. In a second step, dedicated QC focused on the extreme values of the local parameter distribution is
performed. From the resulting dataset, we build several different versions of the reference MinMax fields, using
the profiles acquired over time periods of increasing extent (up to October 2015, as in the previous study, up to
december 2016/2017/2018). Evaluation of the robustness is always performed only with profiles that are posterior
to the time period considered when building the reference fields. New features in this study:

• the datasets used to build the reference fields and to perform the sensitivity study come from the same
database, and the same effort on a dedicated QC. It was not the case in the previous study, as the flags
of the evaluation profiles were set to mimic a specific state (the CMEMS state at the earliest distribution
stage)

• the programs used to perform the QC are now built by OceanScope, and run over the OceanScope database.
The results might differ somehow from what would be obtained with the Coriolis validation database.

• the smoothing over 3 layers of neighbours performed in the MinMax reference fields for the previous study
reduces the spatial resolution of the methodology to more than 700 km. Here we aim at coming back to
smoothing over only 1 layer of neighours (which was shown to be the minimum required to have sufficiently
robust statistics, see gourrion et al. 2019), allowing a resolution close to 300 km. All extra widening of the
validity intervals is performed using the P factor.

• in this new database, 3 additional years of ARGO data are available; we can evaluate the impact of the
time period used to build the reference Min/Max fields.
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2 PRELIMINARY RESULTS

• in addition to statistics in terms of profiles, we will also present statistics in terms of observations. A profile
alert is named good if it contains any good observation alert; it is named bad if it does not contain any
good observation alert but some bad ones.

• it will be possible to distinguish results in terms of depth layer, so that optimal P values can be defined as
a function of depth.

• while the previous work had focused on salinity, this study also presents results for temperature, which
appears to behave somehow differently.

In Section 2, we check that our new data system provides results that are close to the Coriolis system used
in the previous study. In Section 3, we will show how the results degrade when we come back from 3 layers
of neighbours to only 1. The improvement caused by increasing the time period used to build the reference
Min/Max fields is described in Section 4. the impact of the above mentioned widening factor P is described in
Section 5. In Section 6, depth/amplitude histograms of alerts are presented. Section 7 provides statistics for the
specific case of the cells which characteristic bathymetry is smaller than 1800 m. Similar results for temperature
are summarized in Section 8, and operational values of the P factor are proposed in Section 9.

1 Background - The MinMax approach

The MinMax method has been developped for Delayed-Time (DT) QC activities, resulting in a significant re-
duction of the number of profiles unnecessarily visualized by the DT operator. Nevertheless, for direct use in
Real-Time or near-Real-Time (RT) production, the total number of alerts per day is still too large to be treated
by the RT operator. This is understood as an imperfection of the reference fields due to a persistent lack of
geophysical variability as observed in the reference dataset; the reference dataset does not describe the entire
ocean variability, resulting in a significant number of erroneous detections. As a solution, the present study is
proposing to simulate the missing variability through artificially extending the validity interval by a factor P as
follows:

MinP = Median + (1 + P ) · (Min−Median) (1)

MaxP = Median + (1 + P ) · (Max−Median) (2)

Sensitivity of the method robustness to different factors is now evaluated through statistics of good and bad
detections. Optimal P values are proposed as a trade-off to best meet the NRT constraints.

2 Preliminary results

In this section, we first make the link with the previous study. The results obtained with the old Coriolis tools
are compared with those from our new OceanScope tools for the same 3-month period (July to September 2018),
see Figure 1. We present statistics of good (dashed line) and bad (full line) alerts for profiles in order to ease the
comparison with the results from the previous study.

First, the black and blue curves correspond to the same configuration but from the two different systems.
Clearly, statistics from the new system are better in terms of ratio of good to bad alerts. The reason for that is
the ”age” of the July/August/September 2018 data in both systems: the old system is in a state corresponding
to the earliest distribution stage, while the new system contains the same profiles a few months later, i.e. in
January 2019. Within a few month, about 10 % of profiles may have been processed in delayed-mode and have
seen their quality improved, see section 4.1 on the impact of RT/DT processing.

Why do bad alerts reduce faster than good ones when increasing P ?

In Figure 1, we can see that, when increasing the P factor, the reduction in bad alerts occurs faster than for good
alerts. If this is an intrinsic characteristic that led us to imagine that widening the intervals might improve the
robustness at some point, it may not be so obvious why this happens. Here we provide some description that
should help illustrate why the chosen strategy makes sense.

For all alerts, we compute the minimum required P value beyond which the method would stop raising an
alert for that observation. Figure 2 displays the probability density function of such P values, distinguishing
good alerts from bad ones. It appears that, for salinity, the distribution of P values associated with bad alerts is
significantly much narrower than that corresponding to good alerts. Therefore, it is now clear why the proposed
strategy makes sense.
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3 IMPACT OF INCREASING THE SPATIAL RESOLUTION OF THE REFERENCE FIELDS

Figure 1: Left - average daily number of all alerts (dotted), good alerts (dash-dotted) and bad alerts (full line)
as a function of the widening factor P. The black lines refer to the results presented in the previous study. For
the blue lines, the Min/Max fields are smoothed in the same way as in the previous study, ie. vertically and
horizontally over 3 layers of neighbours. Alerts are counted per profile.

Figure 2: Histogram of P values for bad alerts (full line) and good alerts (dashed line). The dataset and Min/Max
fields are the same as those used in Figure 1 for the blue curve.

It is also interesting to note that, as our dedicated QC work preliminary to the estimation of the Min/Max
fields focused on the extreme values, the final quality of our dataset flags is expected to increase with the distance
between the detected observation and the corresponding validity interval bound. As a consequence, we should
expect the overall quality of the bad alert statistics to be somehow poorer than that of the good alert statistics.

3 Impact of increasing the spatial resolution of the reference fields

This experience aims to show the impact of spatial smoothing on the detection, see Figure 3. Spatial smoothing
consists in using observations from the cell of interest together with those from its neighbors at computing the
statistics, allowing to increase the statistical robustness to the price of a degraded resolution. In the first step,
the original setup (blue lines, vertical smoothing + horizontal over 3 layers of neighbours i.e. max scale close to
700 km, same as green lines from Figure 1) is modified removing the vertical smoothing (red lines). We further
reduce the number of layers of neighbours to 2 (green lines, 500 km) and 1 (pink lines, 300 km). As expected,
increasing the resolution results in an increasing number of good detections, to the price of a degraded robustness.

In this study, we made the choice of coming back to smoothing over 1 layer of neighbours in order to keep the
effective resolution close to 300 km. If such a choice leads to well increased number of bad alerts, it also allows
to detect an increased number of erroneous data (good alerts). The robustness of the method is temporarily
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4 IMPACT OF THE TEMPORAL EXTENSION OF THE REFERENCE DATASET

Figure 3: Left - Daily number of all alerts (dotted), good alerts (dash-dotted) and bad alerts (full line) as
a function of the widening factor P. The blue lines refer to the blue lines from Figure 1, i.e. the case with
smoothing over 3 layers of neighbours + vertical smoothing. For the red curves, no vertical smoothing is applied.
For the green curves, horizontal smoothing is performed over 2 layers of neighbours, while for pink curves, only 1
layer of neighbours is used for smoothing. Right: same thing in terms of percentage rather than number of daily
alerts. Top panels correspond to profile alerts while bottom panels refer to observation alerts.

degraded, but, in the following, we will show how the number of bad alerts can be reduced: through 1) extending
the time period of the dataset used to derive the Min/Max reference fields, and 2) using positive values of the
widening factor P. First, we start with distinguishing the statistics between the real-time observations and the
delayed-time ones.

4 Impact of the temporal extension of the reference dataset

We decided to increase the resolution of the Min/Max reference fields to 300 km. Such a decision leads an increase
of both the number of good alerts (about 50 % more errors detected) and the fraction of bad alerts (performance
reduced by a factor 3 to 4), see Figure 3, left panels.

In this section, we characterize the increase of performance obtained from a set of Min/Max reference fields
derived from datasets for which the upper temporal bound is successively extended by 6 months, from december
2015 to june 2018. For each dataset, all the data available since that upper temporal bound and up to december
2018 are used to evaluate the methodology robustness.

It appears that good and bad alerts statistics differ significantly over different subsets of observations: with
RT or DT processing, and for negative (< Min) or positive (> Max) detections. Therefore, the results about
the impact of the temporal extension of the reference dataset are presented separately for these categories of
observations.
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4 IMPACT OF THE TEMPORAL EXTENSION OF THE REFERENCE DATASET

Figure 4: Top left: monthly average number of good (dashed line) and bad (full line) RT alerts for the same 36
month period. The black curves refer to the reference dataset with upper temporal bound by the end of 2015.
Increasing the temporal extent by steps of 6 months, we obtain the blue (June 2016), red (Dec. 2016), green
(June 2017), pink (Dec. 2017) and cyan (June 2018) curves. Bottom left: increment of the monthly average
number of good (dashed line) and bad (full line) alerts at increasing the time extent of the reference dataset by
the same 6-month steps. Right panels are similar to the left ones but for DT alerts, except that the increment is
now multiplicative i.e. a percentage.

4.1 Differencing statistics between observations with RT or DT processing

The results are presented Figure 4 in terms of average daily number of alerts and separating the statistics obtained
from the profiles with only real-time (RT, left panels) from those with delayed-time (DT, right panels) processing.
We only use alerts raised without widening factor (P = 0).

The RT alerts increase over time from 15 to 50 alerts per day over 3 years (upper left panel). They also
reduce additively with the extension of the reference dataset. The lower left panel shows that while, each day, 2
good RT alerts are lost at each 6-month extension of the reference dataset, 4-5 bad RT alerts disappear in the
same time, making the method robustness increase with a larger reference dataset, as expected. The DT alerts
reduce with time (in relation with the fraction of DT processing, see below); at each 6-month extension of the
reference dataset, good and bad alerts are both reduced by about 15%.

We note that, as a recurrent feature, the first 3 months of all bad alert time series are characterized by
significantly lower values. Such feature is understood as the signature of average decorrelation time in the upper
ocean as sensed by ARGO; during these initial months, the profilers are statistically often in the same oceanic
structure as a few months earlier, leading to anomalies already observed in the reference dataset. We believe that
it is reasonable to discard such features before interpreting the results in the general context of real time QC.

We now investigate whether the increase/decrease of RT/DT alerts with time is consistent with the time
evolving fraction of RT/DT observtions. The results are presented in Figure 5 with blue lines; full (dashed) lines
correspond to DT (RT) QC.

Bad alerts

First, the percentage of bad alerts (see Figure 5, right panel) is quite stable over observation time (no tendency
is visible), while the dataset consists of an increasing part of RT observations (see left panel). As bad alerts are
associated to method imperfections, it is a nice result to show that the method robustness is quite homogeneous
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4 IMPACT OF THE TEMPORAL EXTENSION OF THE REFERENCE DATASET

Figure 5: Left: monthly percentage of observations with RT (dashed line) or DT (full line) processing over the
36 months from Jan.2016 to Dec.2018. Middle: monthly percentage of good RT (dashed line) and DT (full line)
alerts for the same period. Right: monthly percentage of bad RT (dashed line) and DT (full line) alerts for the
same period. For all panels, the blue curves refer to the whole dataset while the red curves refer to the same
dataset reduced by the set of platforms having SBE sensors with serial number in the ranges specified in the text.

over time, at least at first order. Second, the percentage of bad alerts appears to be systematically higher by
about 50% for observations with RT processing relatively to those with DT processing. It is useful to recall that
bad alerts have two possible origins: 1) imperfection of the Min/Max reference fields, leading good data to be
improperly qualified as erroneous, and 2) imperfect QC in the database, leading detections to be improperly
qualified as bad alerts instead of good ones. Once this recalled, it is clear that if the first above-cited reason is
not expected to vary with the RT/DT processing, the quality of the database QC is expected to improve after
DT processing. Accordingly, we consider that the systematical lower percentage of bad alerts associated to DT
processing is an understandable and robust result.

Good alerts

First, the percentage of good RT alerts is about one order of magnitude larger than that for DT processing. It
is an expected result, with the ARGO DT dataset showing a smaller amount of erroneous data while the ARGO
DT processing aims to improve the overall quality of the dataset through correction of decoding errors, obvious
offsets or estimated sensor drifts. This result illustrates the improved quality of the DT dataset.

Second, the percentage (and not the number) of RT good alerts appears to systematically increase by a factor
3 along the period 2016-2018 (or decrease with the ”age” in the database of the corresponding observations). This
is understandable only in terms of a slow degradation of the overall dataset quality since early 2016. Indeed, recent
results among the ARGO community suggest a higher than usual occurrence of drift problems with SBE sensors
having serial number in the ranges 6000-7100 and 8100-9200. Following, the same statistics are recomputed once
discarded all observations from the corresponding sensors. Results are presented in Figure 5, red lines. Obviously,
the set of suspected platforms allows to explain the observed increase in good alerts, while the bad alerts statistics
are not affected. Variations in the number of detections by the present method appear to be a reasonable proxy
of the overall quality of the dataset.

As the objective of this study is the near-real time quality control, in the following we will discard DT alerts
from our analysis.

4.2 Differencing statistics from negative (MIN) and positive (MAX) alerts

Here, we propose to distinguish statistics by their sign, i.e. lower than the MIN or greater than the MAX; the
left and right panels of Figure 6 provide the same statistics as Figure 4, left panels, but specific to the MIN and
MAX alerts. MAX alerts are more numerous and increase by a factor 3 over the observed 3-years period, while
the MIN ones only by a factor 2. This is certainly the effect of the recent problem with some SBE sensor series
which induces majoritarily positive errors and impacts essentially the MAX alerts statistics;

As in the previous section, increase of the temporal extent of the reference dataset induces a regular reduction
of all alerts; the bottom panels indicate that the good MIN (resp. MAX) alerts reduce by 0.5 (resp. 1) at each
6-month extension while the bad alerts reduce by 2 (resp. 3) events for same extension.

In the following, we are going to keep this MIN/MAX alerts distinction by default.
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5 IMPACT OF WIDENING THE VALIDITY INTERVALS

Figure 6: Top left: monthly average number of good (dashed line) and bad (full line) RT MIN alerts for the same
36 month period. The black curves refer to the reference dataset with upper temporal bound by the end of 2015.
Increasing the temporal extent by steps of 6 months, we obtain the blue (June 2016), red (Dec. 2016), green
(June 2017), pink (Dec. 2017) and cyan (June 2018) curves. Bottom left: increment of the monthly average
number of good (dashed line) and bad (full line) alerts at increasing the time extent of the reference dataset by
the same 6-month steps. Right panels are similar to the left ones but for RT MAX alerts.

5 Impact of widening the validity intervals

In the previous sections, the main factors controlling the statistics of good and bad alerts have been identified.
It has also been shown that a multiplicative widening of the validity interval makes sense. Here, we present how
the good and bad alerts statistics are modified through widening of the validity interval using a multiplicative
factor P .

The results are presented in Figure 7. The left (right) panels refer to MIN (MAX) alerts. The 4 top panels
provide statistics in terms of profile alerts, which are adequate for estimation of operator time spent in visual QC
tasks; the 4 bottom panels concern individual observation alerts, which are more relevant for method performance
evaluation. For each type of alerts, statistics are presented in terms of 1) mean daily number of alerts and 2)
percentage among all alerts (good+bad).

First, the statistics clearly show a poorer performance (higher bad alert ratio) for the profile alerts than for
the observation alerts. This simply results from the fact that a single observation bad alert within a profile leads
the whole profile to be qualified as a bad alert, unless some good alert is present.

As already observed, the MAX alerts are more numerous than the MIN ones and display a larger impact of the
temporal extent of the reference dataset. The results corresponding to the cyan curves (i.e. the upper temporal
bound is June 2018) show an increased performance relatively to the other ones, which is likely associated to
some higher correlation of the July/August/September 2018 observations with ones included in the corresponding
reference dataset. The performance is certainly exagerated in comparison to the case where these specific reference
fields are used with data posterior to September 2018.
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5 IMPACT OF WIDENING THE VALIDITY INTERVALS

Figure 7: Top left: average dailly number of good (dashed line) and bad (full line) RT MIN profile alerts for
July/August/September 2018. The black curves refer to the reference dataset with upper temporal bound by
the end of 2015. Increasing the temporal extent by steps of 6 months, we obtain the blue (June 2016), red (Dec.
2016), green (June 2017), pink (Dec. 2017) and cyan (June 2018) curves. Middle top left: same as top panel but
for percentages instead of number of profiles with detections. Top right and middle top right panels are similar
to the left ones but for RT MAX profile alerts. The four bottom panels are similar but for individual observation
alerts.
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6 DEPTH/AMPLITUDE DISTRIBUTIONS OF ALERTS

The percentage graphs are expected to be the adequate frame in order to make decisions about the choice of
operational P values. We propose that, starting from an expected performance in terms of good to bad alerts
ratio (e.g. 90 %), such graphs be used to obtain the P value that should allow to fullfill such a constraint on
average.

6 Depth/amplitude distributions of alerts

In this section, we present the joint histograms of amplitude and observation depth of alerts. The amplitude can
either be described through an additive (Q) or multiplicative (P) formulation:

Qmin = Smin − S (3)

Qmax = S − Smax (4)

Pmin =
S − Smed

Smin − Smed
− 1 (5)

Pmax =
S − Smed

Smax − Smed
− 1 (6)

where Pmin (Pmax) is the P value (from Eq. 2) that would be required to cancel the alert, i.e. to let the Smin

(Smax) values reach the alert value S. The first (third) row of Figure 8 refers to Q (P ) as obtained using the
reference dataset up to end 2015. The second (fourth) row is obtained using the reference dataset up to end
2017. The first (second) column concerns the good MIN (MAX) alerts while the third (fourth) concerns the bad
ones. In each panel, the 2-D histogram is represented with colours while the white line shows 1-D histogram of
observation depths. The 2-D histogram is corrected by a factor accounting for the average number of observations
in the corresponding depth layer.

One can summarize observations as follows:

• the MAX alerts are more numerous than the MIN ones (see the extent of the brown/red saturated patches
near 0)

• good MAX alerts occurrence increases linearly with depth (contrarily to good MIN); this is consistent with
drift detections being more effective where the validity intervals are thinnest

• the good alerts are much more widely spread in the P or Q dimensions than the bad ones, consistently with
our Figure 2

• the good alerts are weakly affected by a 2-year increase of the temporal extent of the reference dataset
while the bad ones are reduced by about a factor 2 (see e.g. the 1-D histograms)

• with the Q formulation, the distribution of bad alert amplitudes varies strongly with depth; the P formu-
lation provides a distribution of bad alert amplitudes much more homogeneous with depth, supporting the
multiplicative choice of Eq. 2 for interval widening.
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6 DEPTH/AMPLITUDE DISTRIBUTIONS OF ALERTS

Figure 8: Top row, left panel: depth/amplitude histogram of good MIN alerts with the amplitude characterized
through the additive Q factor. The histogram is normalized by a factor accounting for the variations of the
average number of observations per layer. The alerts are computed using the reference dataset with upper
temporal bound as the end of 2015. The white line is the one-dimensional depth histogram (top labels). Top
row, middle left panel : same for good MAX alerts. Top row, middle right panel: same for bad MIN alerts. Top
row, right panel: same for bad MAX alerts. Middle top row: same as top row but the upper temporal bound of
the reference dataset is end of 2017. Middle bottom and bottom rows: same as the two first rows but using a
multiplicative P factor instead of an additive one.
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7 IMPACT OF GRID CELLS WITH BATHYMETRY SHALLOWER THAN 1800 M

Some surprising features appear in the bad alerts distributions:

• MAX between 1200 and 1400 m, whatever the time extent of the reference dataset and with amplitudes
higher than usual at such a depth; looking more in details, it appears that the corresponding observations
come from profiler 3901156, which displays a salinity drift undetected during our QC of the reference
dataset; the QC values are improperly set to 1; such alerts should be classified as good.

• MAX between 800 and 1200 m, only visible with the shortest time extent of the reference dataset; 5901015,
equatorial Pacific

• MIN between 800 and 1200 m; the alerts come from 2 profilers (2902744 and 2902745) while they are in
the South China Sea, where the reference dataset is poor of data; likely due to imperfect reference fields.

Figure 9: Top: average daily number of good (bad) detections, dashed (full) line for 10 depth layers from 0-200
m (blue) to 1800-2000 m (red). Bottom: same for percentages instead of number of detections. The four left
panels refer to profile alerts while the four right ones to individual observation alerts. In each set of 4 panels, the
first column corresponds to RT MIN alerts while the second one to RT MAX alerts.

• MIN above 200 m; the alerts come from 3 profilers at the time where they are located in the Indonesia Sea
where again the reference dataset is poor of data.

• MIN between 1500 and 1900 m; Caribbean Sea

We note that the present 2-D distribution may help improve the reference dataset QC.
For the reference dataset ending in Dec. 2017 (pink curves in Figure 7), Figure 9 shows the variation with

depth of the detection statistics. The numbers of detections are corrected from the variations of the average
number of observations per layer. Clearly, the good MIN alerts are randomly distributed with depth, while the
good MAX ones are preferentially found at depth; this is consistent with drift problem of conductivity sensors
which mostly result into positive errors and are better detected at depth where the variability is generally weaker.

7 Impact of grid cells with bathymetry shallower than 1800 m

All the results presented in the previous sections adress the case of profiles acquired within geographical grid cells
having some characteristic bathymetry beyond 1800 m; this is the way used in the previous studies to focus on
deep waters as a first objective. Here, we provide statistics for all other grid cells where the reference fields are
defined, i.e. where some profiles were present in the reference dataset. As we use ARGO data for the method
evaluation, it should be noted that our alert statistics do not account for the cells located in shallow water
(typically with bathymetry smaller than 250 m) mostly not sampled by the ARGO network.

Figure 10 provides such results for MIN and MAX alerts. The comparison with Figure 6 allows to claim that
the fractions of good and bad alerts are similar for these shallow grid cells than for the other ones. The method
can be applied to all cells having available statistics, without significative modification of its robustness.

11



8 SIMILAR STATISTICS FOR TEMPERATURE

Figure 10: Same as upper panels of Figure 6 but for grid cells with characteristic bathymetry shallower than
1800 m.

For the sake of completeness, Figure 11 shows, in red, the geographic cells where Min/Max statistics are
provided. In the blue/green cells, the reference dataset does not contain any observation. Among these, the blue
cells correspond to ”deep” ocean (bathy > 250 m) while the green ones to shallow waters (bathy < 250 m).

Figure 11: Map of grid cells with available statistics for the reference dataset extended up to December 2018,
without horizontal smoothing. Red indicates cells with Min/Max values available; blue (green) indicates cells
without Min/Max values available where the characteristic bathymetry is larger (smaller) than 250 m.

8 Similar statistics for temperature
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8 SIMILAR STATISTICS FOR TEMPERATURE

Figure 12: Left: depth/amplitude histogram of good MIN temperature alerts with the amplitude characterized
through the multiplicative P factor. The alerts are computed using the reference dataset with upper temporal
bound as the end of 2017. The white line is the one-dimensional depth histogram (top labels). Middle left: same
for good MAX temperature alerts. Middle right panel: same for bad MIN temperature alerts. Right panel: same
for bad MAX temperature alerts.

Figure 13: Same as Figure 7 but for temperature.

Figure 14: Same as Figure 9 but for temperature.
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9 PROPOSAL OF OPERATIONAL P VALUES

9 Proposal of operational P values

For salinity

Following the previous analysis of salinity detection statistics, we propose the following P values for implemen-
tation in the operational processing chain:

• for MIN detections: P = 0.5− 0.3 ∗min(Z, 1000)/1000

• for MAX detections: P = 0.2 for all depths

For temperature

Following the previous analysis of temperature detection statistics, we propose the following P values for imple-
mentation in the operational processing chain:

• for MIN detections: P = 0 for Z < 400, P = 0.5 for Z > 400

• for MAX detections: P = 0 for Z < 200, P = 0.5 for Z > 200

Bad alert locations
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9 PROPOSAL OF OPERATIONAL P VALUES

Figure 15: Maps with locations of bad alerts raised with the reference dataset extended up to December 2018.
Top: MIN salinity; middle top: MAX salinity; middle bottom: MIN temperature; bottom: MAX temperature.
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